Visualization of ‘Candidatus Liberibacter asiaticus’ Cells in the Vascular Bundle of Citrus Seed Coats with Fluorescence In Situ Hybridization and Transmission Electron Microscopy

Author:

Hilf Mark E.,Sims Kenneth R.,Folimonova Svetlana Y.,Achor Diann S.

Abstract

‘Candidatus Liberibacter asiaticus’ is the bacterium implicated as a causal agent of the economically damaging disease of citrus called huanglongbing (HLB). Vertical transmission of the organism through seed to the seedling has not been demonstrated. Previous studies using real-time polymerase chain reaction assays indicated abundant bacterial 16S rRNA sequences in seed coats of citrus seed but the presence of intact bacterial cells was not demonstrated. We used microscopy to verify that intact bacterial cells were present in citrus seed coats. Bacterial cells with the morphology and physical dimensions appropriate for ‘Ca. L. asiaticus’ were seen in phloem sieve elements in the vascular bundle of grapefruit seed coats using transmission electron microscopy (TEM). Fluorescence in situ hybridization (FISH) analyses utilizing probes complementary to the ‘Ca. L. asiaticus’ 16S rRNA gene revealed bacterial cells in the vascular tissue of intact seed coats of grapefruit and pummelo and in fragmented vascular bundles excised from grapefruit seed coats. The physical measurements and the morphology of individual bacterial cells were consistent with those ascribed in the literature to ‘Ca. L. asiaticus’. No bacterial cells were observed in preparations of seed from fruit from noninfected trees. A small library of clones amplified from seed coats from a noninfected tree using degenerate primers targeting prokaryote 16S rRNA gene sequences contained no ‘Ca. L. asiaticus’ sequences, whereas 95% of the sequences in a similar library from DNA from seed coats from an infected tree were identified as ‘Ca. L. asiaticus’, providing molecular genetic corroboration that the bacterial cells observed by TEM and FISH in seed coats from infected trees were ‘Ca. L. asiaticus’.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3