The Effect of Pythium ultimum and Soil Flooding on Two Soybean Cultivars

Author:

Kirkpatrick M. T.1,Rothrock C. S.1,Rupe J. C.1,Gbur E. E.2

Affiliation:

1. Department of Plant Pathology

2. Agriculture Statistics Lab, University of Arkansas, Fayetteville 72701

Abstract

The effect of flooding and Pythium ultimum on soybean, Glycine max, was determined in a series of greenhouse experiments using the cultivars Hutcheson and Archer. Seeds were planted into pasteurized soil either not infested or infested with sand-cornmeal inoculum of P. ultimum and either flooded at emergence for 2 days or at the four leaf node stage (V4) for 5 days. A nonflooded control was included in each experiment. Seeds placed directly into infested soil resulted in little or no stand for Hutcheson regardless of flood treatment, whereas stand was reduced for Archer only in the flooded infested soil treatment. Additional experiments were conducted by placing seed onto a 2- to 5-mm layer of pathogen-free soil on top of the infested soil. Flooding at emergence reduced plant height, growth stage, and top dry weight for Hutcheson and root fresh weight for both cultivars. Greater reductions for Hutcheson in root weight, and top dry weight in P. ultimum-infested soil in the soil layer experiments, also indicated that Hutcheson was more susceptible than Archer. Flooding alone decreased root weights, and infestation with P. ultimum reduced weights further resulting in an additive effect. This also was the case for plant height, growth stage, and top dry weight for Hutcheson for flooding at emergence. Root discoloration was greatly increased for both cultivars in infested soil flooded at emergence. Similar results were found when plants were flooded at V4; however, the effect was not as great as with flooding at emergence. These studies indicate that Pythium damping-off and root rot may account for a portion of the negative response of soybean to flooding. The results also indicate that Archer has some resistance to P. ultimum.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3