Genetic Variation of ‘Candidatus Liberibacter solanacearum’ Haplotype C and Identification of a Novel Haplotype from Trioza urticae and Stinging Nettle

Author:

Haapalainen M.1ORCID,Wang J.1,Latvala S.1,Lehtonen M. T.1,Pirhonen M.1,Nissinen A. I.1

Affiliation:

1. First, second, and fifth authors: University of Helsinki, Department of Agricultural Sciences, P.O. Box 27, FI-00014 University of Helsinki, Finland; third and sixth authors: Natural Resources Institute Finland (Luke), Natural Resources, Tietotie, FI-31600 Jokioinen, Finland; and fourth author: Finnish Food Safety Authority Evira, FI-00790 Helsinki, Finland.

Abstract

‘Candidatus Liberibacter solanacearum’ (CLso) haplotype C is associated with disease in carrots and transmitted by the carrot psyllid Trioza apicalis. To identify possible other sources and vectors of this pathogen in Finland, samples were taken of wild plants within and near the carrot fields, the psyllids feeding on these plants, parsnips growing next to carrots, and carrot seeds. For analyzing the genotype of the CLso-positive samples, a multilocus sequence typing (MLST) scheme was developed. CLso haplotype C was detected in 11% of the T. anthrisci samples, in 35% of the Anthriscus sylvestris plants with discoloration, and in parsnips showing leaf discoloration. MLST revealed that the CLso in T. anthrisci and most A. sylvestris plants represent different strains than the bacteria found in T. apicalis and the cultivated plants. CLso haplotype D was detected in 2 of the 34 carrot seed lots tested, but was not detected in the plants grown from these seeds. Phylogenetic analysis by unweighted-pair group method with arithmetic means clustering suggested that haplotype D is more closely related to haplotype A than to C. A novel, sixth haplotype of CLso, most closely related to A and D, was found in the psyllid T. urticae and stinging nettle (Urtica dioica, Urticaceae), and named haplotype U.

Funder

Ministry of Agriculture and Forestry of Finland

European Union's Horizon 2020 Pest Organisms Threatening Europe

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3