A Pattern Recognition Tool for Quantitative Analysis of In Planta Hyphal Growth of Powdery Mildew Fungi

Author:

Seiffert U.,Schweizer P.

Abstract

The development of fungal pathogens can be quantified easily at the level of spore germination or penetration. However, the exact quantification of hyphal growth rates after initial, successful host invasion is much more difficult. Here, we report on the development of a new pattern recognition software (HyphArea) for automated quantitative analysis of hyphal growth rates of powdery mildew fungi on plant surfaces that usually represent highly irregular and noisy image backgrounds. By using HyphArea, we measured growth rates of colonies of the barley powdery mildew, Blumeria graminis f. sp. hordei, on susceptible and induced-resistant host plants. Hyphal growth was not influenced by the resistance state of the plants up to 48 h postinoculation. At later time points, growth rate increased on susceptible plants, whereas it remained restricted on induced-resistant plants. This difference in hyphal growth rate was accompanied by lack of secondary haustoria formation on induced-resistant plants, suggesting that induced resistance in barley against Blumeria graminis is caused mainly by reduced penetration rates of primary as well as secondary appressoria leading, finally, to fewer and lessdeveloped fungal colonies. No evidence was found for reduced nutrient-uptake efficiency of the primary haustoria in induced-resistant leaves, which would be expected to have resulted in reduced hyphal growth rates during the first 48 h of the interaction.

Publisher

Scientific Societies

Subject

Agronomy and Crop Science,General Medicine,Physiology

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3