A High-Throughput Gene-Silencing System for the Functional Assessment of Defense-Related Genes in Barley Epidermal Cells

Author:

Douchkov D.,Nowara D.,Zierold U.,Schweizer P.

Abstract

Large-scale gene silencing by RNA interference (RNAi) offers the possibility to address gene function in eukaryotic organisms at a depth unprecedented until recently. Although genome-wide RNAi approaches are being carried out in organisms like Caenorhabditis elegans, Drosophila spp. or human after the corresponding tools had been developed, knock-down of only single or a few genes by RNAi has been reported in plants thus far. Here, we present a method for high-throughput, transient-induced gene silencing (TIGS) by RNAi in barley epidermal cells that is based on biolistic transgene delivery. This method will be useful to address gene function of shoot epidermis resulting in cell-autonomous phenotypes such as resistance or susceptibility to the powdery-mildew fungus Blumeria graminis f. sp. hordei. Gene function in epidermal cell elongation, stomata regulation, or UV resistance might be addressed as well. Libraries of RNAi constructs can be built up by a new, cost-efficient method that combines highly efficient ligation and recombination by the Gateway cloning system. This method allows cloning of any blunt-ended DNA fragment without the need of adaptor sequences. The final RNAi destination vector was found to direct highly efficient RNAi, as reflected by complete knock-down of a cotransformed green fluorescent protein reporter gene as well as by complete phenolcopy of the recessive loss-of-function mlo resistance gene. By using this method, a role of the t-SNARE proteinin three types of durable, race-nonspecific resistance was observed.

Publisher

Scientific Societies

Subject

Agronomy and Crop Science,General Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3