Mutations in Sdh Gene Subunits Confer Different Cross-Resistance Patterns to SDHI Fungicides in Alternaria alternata Causing Alternaria Leaf Spot of Almond in California

Author:

Förster Helga1,Luo Yong1ORCID,Hou Lingling1,Adaskaveg James E.1ORCID

Affiliation:

1. Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521

Abstract

Alternaria leaf spot caused by Alternaria alternata and A. arborescens is a common disease of almond in California. Succinate dehydrogenase inhibitors (SDHIs) are widely used for its management; however, we observed reduced performance of SDHI fungicides at some field sites. Thus, we evaluated the sensitivity to boscalid of 520 isolates of the main pathogen A. alternata collected from major production areas between 2006 and 2019, and also evaluated the sensitivity of a subset of 204 isolates to six members of the SDHIs belonging to six subgroups. Additionally, 97 isolates (14 sensitive and 83 with reduced sensitivity) of the 204 were used to determine the molecular mechanisms of resistance. A wide range of in vitro concentrations to effectively inhibit mycelial growth by 50% (EC50 values) was determined for each fungicide using the spiral gradient dilution method. Some isolates were highly resistant (EC50 values >10 μg/ml) to boscalid (a pyridine-carboxamide), pyraziflumid (a pyrazine-carboxamide), and fluxapyroxad (a pyrazole-4-carboxamide), but not to fluopyram (a pyridinyl-ethyl-benzamide), isofetamid (a phenyl-oxo-ethyl thiophene amide), and pydiflumetofen (a N-methoxy-(phenyl-ethyl)-pyrazole-carboxamide). There was no strong cross resistance among the fungicides tested, including for the two pyrazole-4-carboxamides fluxapyroxad and penthiopyrad (tested for 33 of the 204 isolates). The comparison of EC50 values for fluopyram and isofetamid resulted in the highest coefficient of determination (R2 = 0.582) among 10 pairwise comparisons between subgroups. Sequence analyses of the 97 isolates revealed five mutations in SdhB, SdhC, or SdhD subunits of the Sdh target gene among 73 isolates with reduced sensitivity to at least one SDHI. No mutations were detected in the 14 sensitive isolates and in 10 of the 83 isolates with reduced sensitivity. The most common mutation (59 isolates) was H134R in SdhC. Other mutations included H277Y (eight isolates) and H277L (two isolates) in SdhB, as well as G79R (two isolates) and S135R (two isolates) in SdhC. Mutations H277Y in SdhB and S135R in SdhC were only present in isolates collected in 2012 or earlier. Both conferred mostly high levels of resistance to boscalid and also reduced sensitivity to pyraziflumid, fluxapyroxad, and isofetamid with intermediate EC50 levels. Mutations H277L in SdhB, as well as H134R and G79R in SdhC, found in isolates obtained after 2012 had very similar resistance phenotypes with different levels of resistance to boscalid, pyraziflumid, and fluxapyroxad, whereas sensitivity to fluopyram, isofetamid, and pydiflumetofen was mostly less affected. Our data for SDHI fungicides do not support the classical concept of positive cross resistance within a single mode of action. Because some mutations conferred resistance to multiple SDHI subgroups, however, resistance management needs to consider all SDHIs as a homogenous group that should be mixed or rotated with other modes of action to delay development of resistance.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3