A Rice Black-Streaked Dwarf Virus Replication Curve Model to Evaluate Maize Rough Dwarf Disease Resistance

Author:

Xiaohua Han1ORCID,Tingmu Chen2,Runqing Yue1,Shulei Guo1,Mengmeng Xu1,Caixia Lu1,Yanping Fan1,Nana Chen1,Lu Liu1,Xiaolei Fu1,Haifeng Chi1,Xinhai Guo1,Yan Xia1,Shuanggui Tie1

Affiliation:

1. The Cereal Crops Institute, Henan Academy of Agricultural Sciences/Henan Key Laboratory of Maize Biology, Zhengzhou, Henan Province 450002, China; and

2. Lianyungang Academy of Agricultural Sciences, Lianyungang, Jiangsu Province 222000, China

Abstract

Resistance to maize rough dwarf disease (MRDD), a major cause of crop losses, depends on external conditions such as the virus transmission period and the rate of viruliferous small brown planthoppers, Laodelphax striatellus. The precise identification of MRDD contributes to the utilization of resistant germplasm and the cloning of resistant genes. In this study, eight maize varieties were artificially inoculated in a greenhouse with viruliferous planthoppers. The viral titers in maize seedlings were detected by quantitative fluorescence RT-PCR, and the viral replication curves were analyzed by regression. A logistic model fit the Rice black-streaked dwarf virus (RBSDV) replication data for five susceptible varieties well, whereas a linear model fit the data for three resistant varieties. Among the five susceptible varieties, the time points with the maximum replication rates (tIP) of the highly susceptible Ye478 and XH6 were significantly earlier than those of the three susceptible varieties, Mo17, Zheng58, and Zhengdan958. P138, the most highly resistant variety, had the lowest slope of the best fit line, followed by moderately resistant Chang7-2 and Dan 340. The RBSDV replication curve model developed in this study can accurately identify the resistance of maize germplasm to MRDD at the molecular level. Our results also suggested that tIP and the slope of the RBSDV replication curve can be considered new criteria to evaluate maize resistance to MRDD.

Funder

Henan Fundamental and Frontier Research Fund

Henan Science and Technology Cooperation Project

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3