First report of wheat dwarf bunt caused by Tilletia controversa Kühn in Pakistan

Author:

Muhae-Ud-Din Ghulam1,Tarafder Entaj2,Nizamani Mir Muhammad2,Wang Yong3

Affiliation:

1. Guizhou University, 71206, Plant pathology, Guiyang, Guizhou, China;

2. Guizhou University, 71206, Guiyang, Guizhou, China;

3. Plant Pathology, Guizhou University, Guiyang, Guizhou, China, 550025;

Abstract

Wheat (Triticum aestivum L.) is critical to food security worldwide. Wheat dwarf bunt is caused by Tilletia controversa Kühn and can cause 70-80% losses under severe condition (Trione et al. 1989; Xu et al., 2021). In May 2022, we observed dwarf bunt disease in six fields grown with spring cultivar (Glaxy-13) in District Swat, KPK-Pakistan. Infected plants had mottling and flecking on leaves, a greater number of tillers and were smaller than healthy plants. Diseased wheat head spikes were larger, wider and thicker, had bunted kernels (sori) filled with brown-black teliospores and a strong odor like that of rotten fish. Individual fields showed 10% infected plants while no dwarf bunt was recorded in nearby fields. About 150 heads exhibiting bunted kernels were collected among the six fields. Kernels were surface sterilized with 30% NaClO for 5 min after crushing by a centrifuge machine and washed with ddH20 three times. The teliospore suspension (1×106 spores/mL) was spread on 2% soil agar plates in a growth chamber (MLR 352 H, Panasonic, USA) and incubated at 5°C with 60% relative humidity for 60 days to test for T. controversa germination or at 16°C and 60% relative humidity for 15 days (MLR 352 H, Panasonic, USA) to test for T. caries and T. laevis germination. Teliospores germinated only on plates kept at 5°C. Teliospores were morphologically identified as a T. controversa from the infected samples. They ranged in size from 15.0 to 20.5 µm diam. and the walls had deep reticulations surrounded by a transparent sheath, differing from T. laevis which has smooth teliospores and T. caries which has no sheath and reticulations on the surface (Mathre 1996). To further confirm Tilletia spp. identification, genomic DNA of our two isolates (gmd123 and gmd1234) was obtained using an extraction kit (TransGen, Beijing, China). The internal transcribed spacer (ITS) region was amplified by using ITS1/4 (White et al. 1990). A BLAST search with GenBank accession no. OR366448 and OR366450 provided additional evidence the isolates belong to the complex of species that includes the three bunt species causing diseases on wheat, with 100% matches to verified sequences for T. controversa (eg. EU257561) but also to T. laevis and T. caries. Based on disease symptoms, teliospore morphology, germination at 5°C but not at 16°C, the bunt fungus was identified as T. controversa. To fulfill Koch’s postulates, 10 mL (106 spores/mL) of germinated teliospores were injected into rhizosphere soil of Galaxy-13 cultivar at 2 leaves unfolded growth stage (Zadoks 12) and 2 mL (106 spores/mL) were injected into heads of same plants at growth stages Zadoks 61-65 with a syringe. Plants injected with sterile ddH2O were used as a control. Inoculated plants were grown in a growth chamber at 8°C with 50% humidity and 24 h light. After one month at the ripening stage, the bunted kernels of the inoculated plants were filled with black teliospores releasing a fishy smell, and the control plants did not have bunted kernels. Under an optical microscope, teliospores from the inoculated plants had reticulation surface and were measured 15 to 20.5 µm in diameter, similar to the teliospores of bunt heads from the fields. To the best of our knowledge, this is the first report of T. controversa causing dwarf bunt in district Swat, KPK-Pakistan. Because the pathogen is seedborne and soilborne, the disease may become a high risk to wheat production in Pakistan. Therefore, detection of this pathogen is very important to control the disease on time.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3