Control of Rhizoctonia solani in Sugar Beet and Effect of Fungicide Application and Plant Cultivar on Inoculum Potential in the Soil

Author:

Bartholomäus Anika1,Mittler Stefan2,Märländer Bernward1,Varrelmann Mark1

Affiliation:

1. Institute of Sugar Beet Research, Holtenser Landstr. 77, D-37079 Göttingen, Germany

2. Syngenta Agro GmbH, Am Technologiepark 1-5, D-63477 Maintal, Germany

Abstract

Rhizoctonia solani (AG 2-2 IIIB) is the causal agent of Rhizoctonia root and crown rot, a disease that causes severe economic problems in sugar beet growing areas worldwide. In the United States, azoxystrobin is the most important active ingredient for fungicidal control of R. solani in sugar beet, showing efficacy superior to other substances. First reports on resistance development in R. solani, however, underline the importance of a careful fungicide resistance management. For this reason, the efficacy of a new fungicide mixture of azoxystrobin and difenoconazole was compared with a fungicide containing only azoxystrobin. Field trials were carried out under natural infection conditions as well as with inoculation in the years 2012, 2013, and 2014. Evaluation of the disease severity and the obtained white sugar yield of different sugar beet cultivars demonstrated that both fungicide treatments possess a similar efficacy, reducing the diseased beet surface by up to 78% and preventing yield losses. Additionally, a real-time PCR assay, based on DNA extracts from representative soil samples (250 g), was used to directly determine the effect of chemical treatment and plant cultivar on the soil-borne inoculum. Fungicide application significantly reduced the concentration of soil-borne inoculum by up to 97%. Furthermore, the results demonstrated that the cultivation of a susceptible cultivar significantly increases the concentration of R. solani in the soil by a factor of 200. In conclusion, the study implies that only a combination of resistant cultivar and fungicide application can prevent an accumulation of R. solani inoculum under conducive conditions in infested fields.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3