Affiliation:
1. Interdepartmental Genetics & Genomics Program and
2. Department of Plant Pathology & Microbiology, Iowa State University, Ames, IA 50011, U.S.A.
Abstract
Noncoding sequences in plant viral genomes are well-known to control viral replication and gene expression in cis. However, plant viral and viroid noncoding (nc)RNA sequences can also regulate gene expression acting in trans, often acting like ‘sponges’ that bind and sequester host cellular machinery to favor viral infection. Noncoding sequences of small subgenomic (sg)RNAs of Barley yellow dwarf virus (BYDV) and Red clover necrotic mosaic virus (RCNMV) contain a cap-independent translation element that binds translation initiation factor eIF4G. We provide new evidence that a sgRNA of BYDV can globally attenuate host translation, probably by sponging eIF4G. Subgenomic ncRNA of RCNMV is generated via 5′ to 3′ degradation by a host exonuclease. The similar noncoding subgenomic flavivirus (sf)RNA, inhibits the innate immune response, enhancing viral pathogenesis. Cauliflower mosaic virus transcribes massive amounts of a 600-nt ncRNA, which is processed into small RNAs that overwhelm the host’s RNA interference (RNAi) system. Viroids use the host RNAi machinery to generate viroid-derived ncRNAs that inhibit expression of host defense genes by mimicking a microRNA. More examples of plant viral and viroid ncRNAs are likely to be discovered, revealing fascinating new weaponry in the host-virus arms race.
Subject
Agronomy and Crop Science,General Medicine,Physiology
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献