Sampling for Plant Disease Incidence

Author:

Madden L. V.,Hughes G.

Abstract

Knowledge of the distribution of diseased plant units (such as leaves, plants, or roots) or of the relationship between the variance and mean incidence is essential to efficiently sample for diseased plant units. Cluster sampling, consisting of N sampling units of n individuals each, is needed to determine whether the binomial or beta-binomial distribution describes the data or to estimate parameters of the binary power law for disease incidence. The precision of estimated disease incidence can then be evaluated under a wide range of settings including the hierarchical sampling of groups of individuals, the various levels of spatial heterogeneity of disease, and the situation when all individuals are disease free. Precision, quantified with the standard error or the width of the confidence interval for incidence, is directly related to N and inversely related to the degree of heterogeneity (characterized by the intracluster correlation, ρ). Based on direct estimates of ρ (determined from the θ parameter of the beta-binomial distribution or from the observed variance) or a model predicting ρ as a function of incidence (derived from the binary power law), one can calculate, before a sampling bout, the value of N needed to achieve a desired level of precision. The value of N can also be determined during a sampling bout using sequential sampling methods, either to estimate incidence with desired precision or to test a hypothesis about true disease incidence. In the latter case, the sequential probability ratio test is shown here to be useful for classifying incidence relative to a hypothesized threshold when the data follows the beta-binomial distribution with either a fixed ρ or a ρ that depends on incidence.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3