Evidence of Cytoplasmic Inheritance of Virulence in Cronartium ribicola to Major Gene Resistance in Sugar Pine

Author:

Kinloch Bohun B.,Dupper Gayle E.

Abstract

Tests for Mendelian segregation of virulence and avirulence in Cronartium ribicola, causal agent of white pine blister rust, to a major gene (R) for resistance in sugar pine were made using haploid basidiospore progenies from single diploid telia as inoculum on resistant genotypes. The telia were sampled from a small deme in the Siskyou Mountains of northern California, where a few mature sugar pines known to be Rr genotypes had become infected after withstanding the chronic blister rust epidemic for several decades and where intermediate frequencies of virulence in the ambient basidiospore population were subsequently measured. Infection type on inoculated seedlings with R was qualitative: all progenies of 81 single telia tested over 3 different years were either virulent (compatible) or avirulent (inducing hypersensitive necrosis), never a mixture of both reactions. The complete absence of heterozygotes in the telia population is strong evidence that virulence is not controlled by a nuclear gene. The data are consistent with earlier tests showing that basidiospore inoculum derived from aeciospores isolated from infected Rr trees produced mostly (>90%) virulent reactions on R— seedlings. The evidence indicates that transmission of virulence is uniparental via the cytoplasm of aeciospores. Exchange of spermatia between haploid thalli does not appear to be involved.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cronartium ribicola (white pine blister rust);CABI Compendium;2022-01-07

2. Evolutionary Dynamics of Plant-Pathogen Interactions;2019-01-31

3. Index;Evolutionary Dynamics of Plant-Pathogen Interactions;2019-01-31

4. References;Evolutionary Dynamics of Plant-Pathogen Interactions;2019-01-31

5. Glossary;Evolutionary Dynamics of Plant-Pathogen Interactions;2019-01-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3