Genome-Based Discovery of Polyketide-Derived Secondary Metabolism Pathways in the Barley Pathogen Ramularia collo-cygni

Author:

Dussart F.12ORCID,Douglas R.12,Sjökvist E.13,Hoebe P. N.1,Spoel S. H.2,McGrann G. R. D.1

Affiliation:

1. Crop and Soil Research Department, SRUC, West Mains Road, Kings Buildings, Edinburgh, EH9 3JG, U.K.;

2. Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, U.K.; and

3. Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3TF, U.K.

Abstract

Ramularia collo-cygni causes Ramularia leaf spot (RLS) disease of barley. The fungus develops asymptomatically within its host until late in the growing season, when necrotic lesions become visible on upper leaves. Fungal secondary metabolites (SM) have been proposed as important factors in RLS lesion formation but the biosynthetic pathways involved remain largely unknown. Mining the R. collo-cygni genome revealed the presence of 10 polyketide synthases (PKS), 10 nonribosomal peptide synthetases (NRPS), and 3 hybrid PKS-NRPS (HPS) identified within clusters of genes with predicted functions associated with secondary metabolism. SM core genes along with their predicted transcriptional regulators exhibited transcriptional coexpression during infection of barley plants. Moreover, their expression peaked during early stages of host colonization and preceded or overlapped with the appearance of disease symptoms, suggesting that SM may manipulate the host to promote colonization or protect R. collo-cygni from competing organisms. Accordingly, R. collo-cygni inhibited the growth of several fungi in vitro, indicating that it synthesized and excreted antifungal agents. Taken together, these findings demonstrate that the R. collo-cygni genome contains the genetic architecture to synthesize a wide range of SM and suggests that coexpression of PKS and HPS is associated with competitive colonization of the host and early symptom development. [Formula: see text] Copyright © 2018 The Author(s). This is an open access article distributed under the CC BY 4.0 International license .

Funder

Royal Society

Rural and Environment Science and Analytical Services Division

Publisher

Scientific Societies

Subject

Agronomy and Crop Science,General Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3