Gene Expression Profiling Shows That NbFDN1 Is Involved in Modulating the Hypersensitive Response-Like Cell Death Induced by the Oat dwarf virus RepA Protein

Author:

Hou Huwei1,Hu Ya1,Wang Qian1,Xu Xiongbiao1,Qian Yajuan1ORCID,Zhou Xueping12

Affiliation:

1. State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, People’s Republic of China; and

2. State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People’s Republic of China

Abstract

In this study, we used high-throughput deep nucleotide sequencing to characterize the global transcriptional response of Nicotiana benthamiana plants to transient expression of the RepA protein from Oat dwarf virus (ODV). We identified 7,878 significantly differentially expressed genes (DEG) that mapped to 125 pathways, suggesting that comprehensive networks are involved in regulation of RepA-induced cell death. Of the 202 DEG associated with photosynthesis, expression of 195 was found to be downregulated, indicating a significant inhibition of photosynthesis in response to RepA expression, which is associated with chloroplast disruption and physiological changes. We focused our analysis on NbFDN1, a member of the ferredoxin protein family that participates in the chloroplast electron transport chain performing oxygenic photosynthesis, which was identified to directly interact with NbTsip1. We separately knocked down the expression of NbFDN1 and NbTsip1 using virus-induced gene silencing, and found that NbFDN1 silencing speeded up the development of RepA-induced cell death, unlike NbTsip1 silencing, which showed an opposite effect on RepA-induced response. Further study showed increased H2O2 accumulation and a negative correlation between the transcripts of NbFDN1 and NbTsip1 in NbFDN1-silenced plants. Hence, we speculate that NbFDN1 has an effect on RepA-induced hypersensitive response-like response by modulating NbTsip1 transcription as well as H2O2 production.

Funder

National Natural Science Foundation of China

Publisher

Scientific Societies

Subject

Agronomy and Crop Science,General Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3