Plant Growth Promotion Driven by a Novel Caulobacter Strain

Author:

Luo Dexian12,Langendries Sarah12,Mendez Sonia Garcia123,De Ryck Joren12,Liu Derui12,Beirinckx Stien124,Willems Anne3,Russinova Eugenia12,Debode Jane4,Goormachtig Sofie12ORCID

Affiliation:

1. Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium

2. Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium

3. Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, 9000 Ghent, Belgium

4. Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), 9820 Merelbeke, Belgium

Abstract

Soil microbial communities hold great potential for sustainable and ecologically compatible agriculture. Although numerous plant-beneficial bacterial strains from a wide range of taxonomic groups have been reported, very little evidence is available on the plant-beneficial role of bacteria from the genus Caulobacter. Here, the mode of action of a Caulobacter strain, designated RHG1, which had originally been identified through a microbial screen for plant growth-promoting (PGP) bacteria in maize (Zea mays), is investigated in Arabidopsis thaliana. RHG1 colonized both roots and shoots of Arabidopsis, promoted lateral root formation in the root, and increased leaf number and leaf size in the shoot. The genome of RHG1 was sequenced and was utilized to look for PGP factors. Our data revealed that the bacterial production of nitric oxide, auxins, cytokinins, or 1-aminocyclopropane-1-carboxylate deaminase as PGP factors could be excluded. However, the analysis of brassinosteroid mutants suggests that an unknown PGP mechanism is involved that impinges directly or indirectly on the pathway of this growth hormone.

Funder

Research Foundation–Flanders

Publisher

Scientific Societies

Subject

Agronomy and Crop Science,General Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3