Untargeted Metabolomics Based on GC-MS and Chemometrics: A New Tool for the Early Diagnosis of Strawberry Anthracnose Caused by Colletotrichum theobromicola

Author:

Dai Tan1,Chang Xunian1,Hu Zhihong1,Liang Li1,Sun Mingyou1,Liu Pengfei1ORCID,Liu Xili1

Affiliation:

1. Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China

Abstract

To prevent the spread of anthracnose in strawberry plants and characterize the metabolic changes occurring during plant–pathogen interactions, we developed a method for the early diagnosis of disease based on an analysis of the metabolome by gas chromatography-mass spectrometry. An examination of the metabolic profile revealed 189 and 202 total ion chromatogram peaks for the control and inoculated plants, respectively. A partial least squares discriminant analysis (PLS-DA) model was conducted for the reliable and accurate discrimination between healthy and diseased strawberry plants, even in the absence of disease symptoms (e.g., early stages of infection). ANOVA (analysis of variance) and orthogonal partial least squares analysis (OPLS) identified 20 metabolites as tentative biomarkers of Colletotrichum theobromicola infection (e.g., citric acid, d-xylose, erythrose, galactose, gallic acid, malic acid, methyl α-galactopyranoside, phosphate, and shikimic acid). At least some of these potential biomarkers may be applicable for the early diagnosis of anthracnose in strawberry plants. Moreover, these metabolites may be useful for characterizing pathogen infections and plant defense responses. This study confirms the utility of metabolomics research for developing diagnostic tools and clarifying the mechanism underlying plant–pathogen interactions. Furthermore, the data presented herein may be relevant for developing new methods for preventing anthracnose in strawberry seedlings cultivated under field conditions.

Funder

National Natural Science Foundation of China

Special Fund of the National Science Foundation of China

National Key Research and Development Program of China

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3