Drought Stress Enhances Up-Regulation of Anthocyanin Biosynthesis in Grapevine leafroll-associated virus 3-Infected in vitro Grapevine (Vitis vinifera) Leaves

Author:

Cui Zhen-Hua1,Bi Wen-Lu2,Hao Xin-Yi2,Li Peng-Min2,Duan Ying2,Walker M. Andrew3,Xu Yan2,Wang Qiao-Chun2

Affiliation:

1. State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Genetic Improvement of Horticultural Crops of Northwest China, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, P.R. China; and Department of Viticulture and Enology, University of California, Davis, 95616-3014

2. State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Genetic Improvement of Horticultural Crops of Northwest China, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, P.R. China

3. Department of Viticulture and Enology, University of California, Davis, 95616-3014

Abstract

Reddish-purple coloration on the leaf blades and downward rolling of leaf margins are typical symptoms of grapevine leafroll disease (GLD) in red-fruited grapevine cultivars. These typical symptoms are attributed to the expression of genes encoding enzymes for anthocyanins synthesis, and the accumulation of flavonoids in diseased leaves. Drought has been proven to accelerate development of GLD symptoms in virus-infected leaves of grapevine. However, it is not known how drought affects GLD expression nor how anthocyanin biosynthesis in virus-infected leaves is altered. The present study used HPLC to determine the types and levels of anthocyanins, and applied reverse transcription quantitative polymerase chain reaction (RT-qPCR) to analyze the expression of genes encoding enzymes for anthocyanin synthesis. Plantlets of Grapevine leafroll-associated virus 3 (GLRaV-3)-infected Vitis vinifera ‘Cabernet Sauvignon’ were grown in vitro under PEG-induced drought stress. HPLC found no anthocyanin-related peaks in the healthy plantlets with or without PEG-induced stress, while 11 peaks were detected in the infected plantlets with or without PEG-induced drought stress, but the peaks were significantly higher in infected drought-stressed plantlets. Increased accumulation of total anthocyanin compounds was related to the development of GLD symptoms in the infected plantlets under PEG stress. The highest level of up-regulated gene expression was found in GLRaV-3-infected leaves with PEG-induced drought stress. Analyses of variance and correlation of anthocyanin accumulation with related gene expression levels found that GLRaV-3-infection was the key factor in increased anthocyanin accumulation. This accumulation involved the up-regulation of two key genes, MYBA1 and UFGT, and their expression levels were further enhanced by drought stress.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3