Fusarium pseudograminearum Associated with Barley Kernels in Argentina

Author:

Castañares E.1,Wehrhahne L.2,Stenglein S. A.3

Affiliation:

1. BIOLAB-CEBB, Facultad de Agronomía, UNCPBA, CC 47-CP 7300, Azul, CONICET, Buenos Aires, Argentina

2. Chacra Experimental Integrada Barrow, CC 50 (B7500WAA) Tres Arroyos, Buenos Aires, Argentina

3. BIOLAB-CEBB, Facultad de Agronomía-Cátedra Microbiología, UNCPBA, CC 47-CP 7300, Azul, CONICET, Buenos Aires, Argentina

Abstract

Barley (Hordeum vulgare L.), one of the most widely grown winter cereal crops in Argentina, is primarily grown for use as malted barley for the beer industry. In December 2010, a survey of fungi was conducted in a barley (cv. Shakira) seed lot in a field located in Tres Arroyos, Buenos Aires, Argentina. A sample of 400 seeds was surface sterilized (70% EtOH for 2 min and 5% NaClO for 2 min), rinsed twice in sterilized distilled water, plated on potato dextrose agar (PDA), and incubated at 24 ± 2°C in a 12-h dark/light cycle. One isolate that was morphologically similar to Fusarium graminearum was observed after 6 days of incubation. The isolate was transferred onto PDA and carnation leaf agar (CLA) substrates and grown with the same conditions as described above. On PDA, the isolate produced abundant, white-to-yellow-to-red, aerial mycelium and formed red pigments in the medium. On CLA, macroconidia were abundant, relatively slender and almost straight to moderately curved, and commonly five to six septate. Microconidia were not observed. Chlamydospores were observed after 3 weeks. The fungus was initially identified as F. graminearum on the basis of morphology of the asexual stage (1). Pathogenicity was conducted using a hand sprayer to inoculate five barley (cv. Shakira) heads in potted plants with a 5-ml asexual spore suspension (1 × 104 conidia per ml). Two heads were sprayed with sterile distilled water as a control. Plants were covered with polyethylene bags and incubated for 3 days in a growth chamber under a 12-h day/dark cycle at 22 ± 2°C. Plants were unbagged and moved into a greenhouse. Noninoculated spikelets were asymptomatic and inoculated spikelets showed discoloration or a tan-to-dark brown necrosis. The fungus was reisolated from symptomatic kernels. DNA of the isolate was extracted (3) and the isolate was identified to species by sequencing the reductase (RED), trichothecene 3-O-acetyltransferase (tri101), and translation elongation factor (TEF) regions (4). The sequences were compared with those in GenBank. The RED sequence (Accession No. JQ350697) showed 100% similarity, the tri101 (Accession No. JQ350698) showed 99% similarity, and the TEF (Accession No. JQ350699) showed 100% similarity with several F. pseudograminearum sequences. Additionally, the isolate was tested for the potential to produce deoxinyvalenol (DON) using a PCR approach that allows identification of two acetylated forms of DON: 15-acetyl-DON (15-ADON) and 3-ADON (2). A PCR product indicative of a 3-ADON genotype was obtained. To our knowledge, this is the first report of F. pseudograminerum associated with barley kernels in Argentina. Considering its potential to cause head blight and product mycotoxins, a large-scale survey of F. pseudograminearum on barley crops in Argentina is underway. A voucher culture (No. 1154) has been deposited in the Culture Collection of the La Plata Spegazzini Institute. References: (1) J. F. Leslie and B. A. Summerell. The Fusarium Laboratory Manual. Blackwell Publishing, Oxford, UK. 2006. (2) A. Quarta et al. Food Addit. Contam. 22:309, 2005. (3) S. A. Stenglein and P. A. Balatti. Physiol. Mol. Plant Pathol. 68:158, 2006. (4) T. J. Ward et al. Fungal Genet. Biol. 45:473, 2008.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3