Quantitative Trait Loci (QTLs) for Intumescence Severity in Eucalyptus globulus and Validation of QTL Detection Based on Phenotyping Using Open-Pollinated Families of a Mapping Population

Author:

Ammitzboll Hans1,Vaillancourt René E.1,Potts Brad M.1,Singarasa Sambavi1,Mani Radhika1,Freeman Jules S.1ORCID

Affiliation:

1. Scion, Rotorua, 3046, New Zealand; and School of Natural Science and ARC Training Centre for Forest Value, University of Tasmania, Hobart, TAS 7001, Australia

Abstract

Intumescence is a nonpathogenic physiological disorder characterized by leaf blistering. This disorder can affect growth and development in glasshouses and growth chambers and may be confused with pathogenic diseases. We used quantitative trait loci (QTL) analysis to examine the genetic basis of variation in intumescence severity in Eucalyptus globulus, and test for colocation with previously detected QTLs for pathogen susceptibility. QTL analysis used the phenotype means of open-pollinated (OP) families of an outcrossed F2 mapping family (OP F3; n = 300) of E. globulus and the linkage map constructed in the F2. We validate this phenotyping approach for QTL analysis by assessing a trait previously used for QTL discovery in the F2 and showing the same major QTL was detected with the OP F3. For intumescence severity, five putative QTLs were detected across four linkage groups. Four of these did not colocate with previously reported QTLs for fungal pathogen susceptibility in Eucalyptus, suggesting the mechanisms underlying susceptibility to intumescence and to the two fungal pathogens are largely independent. This study demonstrates there is a genetic basis for variation in intumescence severity, reports the first QTL for intumescence severity in plants, and provides a robust framework for investigating the potential mechanisms involved.

Funder

Australian Research Council

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3