Dry Heat and Hot Water Treatments for Disinfesting Cottonseed of Fusarium oxysporum f. sp. vasinfectum

Author:

Bennett Rebecca S.1,Colyer Patrick D.2

Affiliation:

1. Western Integrated Cropping Systems Research Unit, USDA-ARS, 17053 North Shafter Avenue, Shafter, CA 93263

2. Louisiana Agricultural Experiment Station, Red River Research Station, P.O. Box 8550, Bossier City 71113-8550

Abstract

The potential of low- and high-temperature dry heat, and hot water treatments, for disinfesting cottonseed of Fusarium oxysporum f. sp. vasinfectum was investigated. Naturally infected seeds from Louisiana were air-heated at 30, 35, and 40°C for up to 24 weeks. Seed harvested from bolls inoculated with race 4 of F. oxysporum f. sp. vasinfectum were incubated in dry heat at 60, 70, and 80°C for 2 to 14 days, or were immersed in 90°C water from 45 s to 3 min. The effects on seed germination and vigor of hot water treatment and a subset of the high-temperature dry heat treatments were also examined in seeds of a Pima (Gossypium barbadense) and an Upland (G. hirsutum) cultivar. Low- or high-temperature dry heat did not eliminate Fusarium spp. from the seed, although seed infection declined more rapidly with higher incubation temperatures. High-temperature dry heat treatments effective in eliminating fusaria also significantly reduced seed vigor in both the Pima and Upland cultivars. Seed from all times of immersion in hot water were less frequently infected with Fusarium spp. than nontreated seed. Incidence of seed infection did not differ significantly among immersion times ranging from 75 s to 3 min. Immersion in 90°C water did not reduce germination or vigor at exposure times ≤120 s and ≤150 s for seeds of Pima and Upland cotton, respectively. Results from the hot water treatments suggest that thermotherapy may be optimized to provide a tactic to prevent the spread of virulent F. oxysporum f. sp. vasinfectum genotypes into uninfested areas through infected seed.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3