Assessing Genetic Resistance in Wheat to Black Point Caused by Six Fungal Species in the Yellow and Huai Wheat Area of China

Author:

Li Qiaoyun1,Li Mengyu1,Jiang Yumei1,Wang Siyu1,Xu Kaige1,Liang Xiaolong1,Niu Jishan1,Wang Chenyang1ORCID

Affiliation:

1. National Engineering Research Center for Wheat / National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, No. 15 Longzi Lake University Zone, New East District, Zhengzhou 450002, P. R. China

Abstract

The most effective and environmentally sustainable method for controlling black point disease of wheat (Triticum aestivum L.) is to plant resistant cultivars. To identify sources of resistance to black point, 165 selected cultivars/lines were inoculated with isolates of six fungal species (Bipolaris sorokiniana, Alternaria alternata, Fusarium equiseti, Exserohilum rostratum, Epicoccum sorghinum, and Curvularia spicifera) known to cause black point in wheat using spore suspensions under controlled field conditions in 2016 and 2017. Inoculation of the isolates significantly increased the incidence of black point in the cultivars/lines compared with those grown under natural field conditions (NFC). The disease incidence of plants inoculated with B. sorokiniana and E. rostratum was 15.5% and 18.8% in 2016, and 20.4% and 23.0% in 2017, whereas those under NFC were 5.7% (2016) and 1.5% (2017), respectively. Furthermore, disease symptoms varied with pathogen. Among the 165 cultivars/lines tested, 3.6%, 50.9%, 60.0%, 1.8%, 47.3%, and 58.8% were resistant to B. sorokiniana, A. alternata, F. equiseti, E. rostratum, E. sorghinum, and C. spicifera, respectively. In addition, we identified one line (‘SN530070’) resistant to black point caused by all six pathogens. This is the first study to assess resistance to wheat black point caused by six fungal species under controlled conditions. The black point-resistant cultivars/lines could be useful in breeding and also in research on the mechanisms of resistance to black point.

Funder

National Key Research and Development Program of China

Scientific and Technological Project in Henan Province

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3