Development of Agrobacterium tumefaciens Infiltration of Infectious Clones of Grapevine Geminivirus A Directly into Greenhouse-Grown Grapevine and Nicotiana benthamiana Plants

Author:

Kuo Yen-Wen1ORCID,Bednarska Alicja1,Al Rwahnih Maher12,Falk Bryce W.1

Affiliation:

1. Department of Plant Pathology, University of California, Davis, CA 95616

2. Foundation Plant Services, University of California, Davis, CA 95616

Abstract

Grapevine virus infectious clones are important tools for fundamental studies, but also because of their potential for translational applications for grapevine improvement. Although several grapevine virus infectious clones have been developed, there has been difficulty in directly infecting mature grapevine plants, and many of the viruses used still cause disease symptoms in grapevine plants, making them less likely candidates for biotechnological applications in grapes. Here, we developed an improved Agrobacterium tumefaciens infiltration method that can be used to deliver DNA plasmids and viral infectious clones directly into approximately 20- to 40-cm-high (above soil) greenhouse-grown grapevine plants. We also developed infectious clones for two isolates of grapevine geminivirus A (GGVA): Longyan (China; GenBank accession KX570611; GGVA-76) and Super Hamburg (Japan; GenBank accession KX570610; GGVA-93). Neither virus caused any obvious symptoms when inoculated to plants of grapevine varieties Colombard, Salt Creek, Cabernet Sauvignon, and Vaccarèse. However, the two GGVA isolates induced different symptom severity and viral titer in Nicotiana benthamiana plants. The two GGVA isolates used here were found to accumulate to different titers in different parts/branches of the infected grapevine plants. The GGVA infectious clones and the improved grapevine infiltration technique developed here provide new, valuable tools that can be applied to grapevine plants, possibly even for translational applications such as disease management and desired trait improvements.

Funder

California Department of Food and Agriculture

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3