Affiliation:
1. Department of Plant Pathology, Washington State University, Pullman, WA, U.S.A.
2. Department of Horticulture and Food Security, Jomo Kenyatta University of Agriculture and Technology, Juja, Kenya
Abstract
Plant viruses infect a wide range of commercially important crop plants and cause significant crop production losses worldwide. Numerous alterations in plant physiology related to the reprogramming of gene expression may result from viral infections. Although conventional integrated pest management-based strategies have been effective in reducing the impact of several viral diseases, continued emergence of new viruses and strains, expanding host ranges, and emergence of resistance-breaking strains necessitate a sustained effort toward the development and application of new approaches for virus management that would complement existing tactics. RNA interference-based techniques, and more recently, clustered regularly interspaced short palindromic repeats (CRISPR)-based genome editing technologies have paved the way for precise targeting of viral transcripts and manipulation of viral genomes and host factors. In-depth knowledge of the molecular mechanisms underlying the development of disease would further expand the applicability of these recent methods. Advances in next-generation/high-throughput sequencing have made possible more intensive studies into host−virus interactions. Utilizing the omics data and its application has the potential to expedite fast-tracking traditional plant breeding methods, as well as applying modern molecular tools for trait enhancement, including virus resistance. Here, we summarize the recent developments in the CRISPR/Cas system, transcriptomics, endogenous RNA interference, and exogenous application of dsRNA in virus disease management.
Funder
U.S. Department of Agriculture-National Institute of Food and Agriculture Hatch Project
Specialty Crop Research Initiative
National Science Foundation Plant Biotic Interactions Grant Program
Fulbright U.S. Scholar Program
Subject
Plant Science,Agronomy and Crop Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献