Spatial Analysis of Rice Blast in China at Three Different Scales

Author:

Guo Fangfang1ORCID,Chen Xinglong1,Lu Minghong1,Yang Li1,Wang Shiwei1,Wu Bo Ming1ORCID

Affiliation:

1. First, second, fourth, fifth, and sixth authors: Department of Plant Pathology, China Agricultural University, Beijing, 100193, China; and third author: National Agricultural Technology Extension and Service Center, Ministry of Agriculture of the People’s Republic of China, Beijing, 100125, China.

Abstract

In this study, spatial analyses were conducted at three different scales to better understand the epidemiology of rice blast, a major rice disease caused by Magnaporthe oryzae. At the regional scale, across the major rice production regions in China, rice blast incidence was monitored on 101 dates at 193 stations from 10 June to 10 September during 2009 to 2014, and surveyed in 143 fields in September 2016; at the county scale, three surveys were done covering one to five counties in 2015 to 2016; and, at the field scale, blast was evaluated in six fields in 2015 to 2016. Spatial cluster and hot spot analyses were conducted in the geographic information system on the geographical pattern of the disease at regional scale, and geostatistical analysis was performed at all three scales. Cluster and hot spot analyses revealed that high-disease areas were clustered in mountainous areas in China. Geostatistical analyses detected spatial dependence of blast incidence with influence ranges of 399 to 1,080 km at regional scale and 5 to 10 m at field scale but not at county scale. The spatial patterns at different scales might be determined by inherent properties of rice blast and environmental driving forces, and findings from this study provide helpful information to sampling and management of rice blast.

Funder

National Natural Science Foundation of China

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3