Affiliation:
1. State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
Abstract
Powdery mildew, caused by Blumeria graminis f. sp. tritici ( Bgt), is one of the most important diseases on wheat worldwide and can lead to a large reduction in wheat production. Class III peroxidases (PODs), a kind of secretory enzyme and members of a multigene family in higher plants, have been linked to various plant physiological functions and defensive responses. However, the role of PODs in wheat resistance to Bgt remains unclear. TaPOD70, a class III POD gene, was identified from the proteomics sequencing of the incompatible interaction between wheat ( Triticum aestivum) cultivar Xingmin 318 and Bgt isolate E09. After transient expression of the TaPOD70-GFP fusion protein in Nicotiana benthamiana leaves, TaPOD70 was located in the membrane region. Yeast secretion assay showed that TaPOD70 was a secretory protein. Furthermore, Bax-induced programmed cell death was inhibited by transient expression of TaPOD70 in N. benthamiana. The transcript expression level of TaPOD70 was significantly upregulated in the wheat– Bgt compatible interaction. More crucially, knocking down TaPOD70 using virus-induced gene silencing increased wheat resistance to Bgt compared with the control plants. In response to Bgt, histological analyses indicated that hyphal development of Bgt was significantly reduced, whereas H2O2 production was enhanced in TaPOD70-silenced leaves. These findings imply that TaPOD70 may act as a susceptibility factor, adversely regulating wheat resistance to Bgt.
Funder
National Key R&D Program of China
Ministry of Science and Technology of the People's Republic of China
Key R&D Program of Shaanxi Province
Education Ministry of China
Subject
Plant Science,Agronomy and Crop Science
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献