Effects of Soil Temperature on Microsclerotia of Calonectria ilicicola and Soybean Root Colonization by this Fungus

Author:

Kuruppu P. U.1,Schneider R. W.2,Russin J. S.3

Affiliation:

1. Parks Library, Iowa State University, Ames 50011

2. Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge 70803

3. Department of Plant and Soil Science, Southern Illinois University, Carbondale 62901-4415

Abstract

Field soil artificially infested with laboratory-produced microsclerotia of Calonectria ilicicola was incubated for 1, 2, 3, or 6 weeks at 20, 25, 30, 35, and 40°C. These temperatures approximate soil temperatures that were measured in soybean fields during the growing season in south Louisiana. Germinable microsclerotia were enumerated after incubation at different temperatures, and soybean seeds were planted in these soils. After 8 weeks, percent root colonization was determined as a measure of infectivity of microsclerotia. Results showed that soil temperature is a critical factor in survival of microsclerotia. The optimal soil temperature range for survival of microsclerotia was 20 to 30°C, and the maximum soil temperature limit was 35°C, above which microsclerotia did not survive. Effects of temperature on soybean root colonization were examined in growth chambers by growing soybean plants in soil infested with laboratory-grown microsclerotia for 4 weeks after seed germination. Maximum infection of young soybean roots by C. ilicicola occurred between 25 and 30°C but decreased with increasing temperatures and was negligible at 40°C. According to these results, soil temperature is a critical environmental factor controlling the development of red crown rot in soybeans in Louisiana. These findings suggest that, if red crown rot is a threat, soybean planting time should be based on soil temperature rather than calendar dates.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3