Bacterial Blight on Arugula, a New Disease Caused by Pseudomonas syringae pv. Alisalensis in California

Author:

Bull C. T.1,Goldman P.1,Koike S. T.2

Affiliation:

1. U.S. Agricultural Research Station, Salinas, CA 93905

2. University of California Cooperative Extension, Salinas 93901

Abstract

Beginning in 1995, a leaf spot disease has occasionally developed on the leafy crucifer arugula (Eruca vesicaria subsp. sativa) that is grown in coastal California as a fresh market commodity used mostly in bagged salad mixes. Initially, symptoms consist of small (<2 mm in diameter), angular, water-soaked spots that are visible from both sides of the leaf. The spots later enlarge, remain angular in shape, and turn brown to tan. A purple margin sometimes occurs around the spots. An important diagnostic feature is that this disease closely resembles downy mildew infections that have not produced sporangia (3). A blue-green fluorescent pseudomonad was consistently isolated from both types of lesions on King's medium B. Strains were levan positive, oxidase negative, and arginine dihydrolase negative. Strains did not rot potato slices but induced a hypersensitive reaction on tobacco (Nicotiana tabacum L. cv. Turk). These data indicated that the bacteria belonged to Lelliot's LOPAT group 1 (4). This was confirmed with data from fatty acid methyl ester analysis (MIS-TSBA version 4.10; MIDI, Inc., Newark, DE), which indicated that the strains were highly similar (similarity > = 0.758) to Pseudomonas syringae. Amplification of repetitive bacterial sequence-based polymerase chain reaction (rep-PCR) was used to determine the relationship between the P. syringae strains isolated from arugula and two common crucifer pathogens, P. syringae pv. maculicola and P. syringae pv. alisalensis (1). Using the BOXA1R primer, banding patterns for the arugula strains and the P. syringae pv. alisalensis pathotype were similar, differing by only one band. In contrast, the banding patterns of the arugula strains differed significantly from those of P. syringae pv. maculicola. Additionally, the arugula isolates were sensitive to a bacteriophage originally isolated for its ability to lyse P. syringae pv. alisalensis (1). Previously, the pathogen from arugula was reported to be P. syringae pv. maculicola (2). It is the intent of this disease note to clarify this identification. We completed Koch's postulates by confirming pathogenicity on arugula (cv. Rocket Salad). The strains were grown as nutrient broth shake cultures for 48 h at 24°C, adjusted to 108 CFU/ml, and misted onto 2- to 3-week old plants. Control plants were misted with sterile nutrient broth. After 4 to 5 days in a greenhouse (24 to 26°C), large, angular leaf lesions developed on all inoculated arugula plants. Strains were reisolated from symptomatic tissue and identified as P. syringae pv. alisalensis. Control plants remained symptomless. Similar methods confirmed that the host range of the arugula isolates were identical to that of P. syringae pv. alisalensis. The arugula and P. syringae pv. alisalensis isolates caused disease on broccoli (Brassica oleracea var. botrytis cvs. Patriot and Titleist), broccoli raab (B. rapa subsp. rapa cv. Sorento), and oats (Avena sativa cv. Montezuma), while P. syringae pv. maculicola caused disease on broccoli only. Pathogenicity tests were conducted two times with identical results. This confirms that the bacterial blight that has been occurring on commercial plantings of arugula is caused by P. syringae pv. alisalensis. References: (1) N. A. Cintas et al.Plant Dis. 86:992, 2002. (2) S. T. Koike et al. Plant Dis. 80:464, 1996. (3) S. T. Koike. Plant Dis. 82:1063, 1998. (4) R. A. Lelliott, J. Appl. Bacteriol. 29:470, 1966.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3