Chemiluminescent and Colorimetric Detection of Erwinia amylovora by Immunoenzymatic Determination of PCR Amplicons from Plasmid pEA29

Author:

Merighi M.1,Sandrini A.2,Landini S.2,Ghini S.2,Girotti S.2,Malaguti S.3,Bazzi C.3

Affiliation:

1. Department of Plant Pathology, The Ohio State University, Columbus 43210

2. UCI/SCRM Institute of Chemical Sciences, University of Bologna, Italy

3. UCI/STAA Institute of Plant Pathology, University of Bologna, Italy

Abstract

A molecular diagnostic technique (polymerase chain reaction enzyme-linked immunosorbent assay [PCR-ELISA]) for detection of Erwinia amylovora was developed. The protocol is based on the immunoenzymatic determination of PCR products. For in vitro amplification, we used previously published primers able to detect the cryptic plasmid pEA29, which is ubiquitous in E. amylovora. Amplicons were labeled with 11-digoxigenin (DIG)-dUTP during the amplification reaction, captured by hybridization to a biotinylated oligonucleotide in streptavidin-coated ELISA microplates, and then detected with anti-DIG-Fab′-peroxidase conjugated antibodies. The specificity of the assay was verified using E. amylovora strains from different host plants and geographical origins in addition to other plant-associated bacteria (either phytopathogenic or saprophytic) belonging to the genera Erwinia, Pseudomonas, and Agrobacterium. In detection threshold experiments with pure cultures, as few as 30 and 3 CFU/reaction tube were detected when the ABTS (colorimetric) and ECL (chemiluminescent) detection assays, respectively, were used. PCR-ELISA coupled with chemiluminescent detection was able to detect as few as 4 × 102 CFU/g of artificially infested pear twigs. The assay was further shown to be suitable for detection of E. amylovora in naturally infected plant organs, and the results were compared to those obtained using standard PCR assays with electrophoretic separation of amplicons.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Erwinia amylovora (fireblight);CABI Compendium;2022-01-07

2. Immunotechnology for Plant Disease Detection;Trends in Plant Disease Assessment;2022

3. Gold Nanoparticles-Based Point-of-Care Colorimetric Diagnostic for Plant Diseases;Concepts and Strategies in Plant Sciences;2021

4. Bioindicators and biomonitoring: honeybees and hive products as pollution impact assessment tools for the Mediterranean area;Euro-Mediterranean Journal for Environmental Integration;2020-10-13

5. Polymerase Chain Reaction;Springer Protocols Handbooks;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3