A Comparison of Methods Used to Estimate the Maturity and Release of Ascospores of Venturia inaequalis

Author:

Gadoury David M.1,Seem Robert C.1,MacHardy William E.2,Wilcox Wayne F.1,Rosenberger David A.1,Stensvand Arne3

Affiliation:

1. Department of Plant Pathology, Cornell University, New York State Agricultural Experiment Station, Geneva 14456

2. Department of Plant Biology, University of New Hampshire, Durham 03824

3. Department of Plant Pathology, Plant Protection Centre, The Norwegian Crop Research Institute, N-1432 Ås, Norway

Abstract

Maturation and release of ascospores of Venturia inaequalis were assessed at Geneva and Highland, NY, and at Durham, NH, by microscopic examination of crushed pseudothecia excised from infected apple leaves that were collected weekly from orchards (squash mounts) in 14 siteyear combinations. Airborne ascospore dose was monitored at each location in each year of the study by volumetric spore traps. Additional laboratory assessments were made at Geneva to quantify release from infected leaf segments upon wetting (discharge tests). Finally, ascospore maturity was estimated for each location using a degree-day model developed in an earlier study. Ascospore maturation and release determined by squash mounts and discharge tests lagged significantly behind cumulative ascospore release as measured by volumetric spore traps in the field. The mean date of 98% ascospore discharge as determined by squash mounts or discharge tests occurred from 23 to 28 days after the mean date on which 98% cumulative ascospore release had been detected by volumetric traps. In contrast, cumulative ascospore maturity estimated by the degree-day model was highly correlated (r2 = 0.82) with observed cumulative ascospore release as monitored by the volumetric traps. Although large differences between predicted maturity and observed discharge were common during the exponential phase of ascospore development, the date of 98% cumulative ascospore maturity predicted by the model was generally within 1 to 9 calendar days of the date of 98% cumulative ascospore recovery in the volumetric traps. Cumulative ascospore discharge as monitored by the volumetric traps always exceeded 98% at 600 degree days (base = 0°C) after green tip. Estimating the relative quantity of primary inoculum indirectly by means of a degree-day model was more closely aligned with observed ascospore release, as measured by volumetric traps, than actual assessments of ascospore maturity and discharge obtained through squash mounts and discharge tests. The degree-day model, therefore, may be a more accurate predictor of ascospore depletion than squash mounts or discharged tests, and has the added advantage that it can be widely applied to generate site-specific estimates of ascospore maturity for any location where daily temperature data are available.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3