Affiliation:
1. University of California Davis, Department of Plant Pathology, One Shields Avenue, Hutchison Hall, Davis 95616.
Abstract
Esca is a complex grapevine trunk disease associated with fungal infection of the xylem. However, the inconstancy of external symptoms and the ability of esca-associated fungi to inhabit grapevines without causing apparent disease suggests that abiotic factors might be involved in the disease. Water stress has been proposed to be one of the factors influencing esca symptom manifestation but the specific role played by water stress on esca development is unknown. We conducted a proton nuclear magnetic resonance spectroscopy-based metabolomic study aiming at unveiling drought-induced modifications in xylem sap composition that could contribute to esca-related infection progression. Vitis vinifera ‘Chardonnay’ plants were inoculated with Phaeomoniella chlamydospora or Phaeoacremonium minimum and exposed to water stress. Using this approach, 28 metabolites were identified in xylem sap. The results show that water stress induces a concentration increase of most metabolites in xylem sap. An average increase >100% was found for asparagine, isoleucine, leucine, methionine, phenylalanine, proline, tyrosine, valine, sarcosine, and trigonelline. The increase of these compounds seems to be also modulated by fungal infection. This study offers further support to the putative role of drought in esca expression, and opens new avenues of research by extending the current knowledge about metabolites possibly involved in esca disease.
Subject
Plant Science,Agronomy and Crop Science
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献