Beyond Yield: Plant Disease in the Context of Ecosystem Services

Author:

Cheatham M. R.,Rouse M. N.,Esker P. D.,Ignacio S.,Pradel W.,Raymundo R.,Sparks A. H.,Forbes G. A.,Gordon T. R.,Garrett K. A.

Abstract

The ecosystem services concept provides a means to define successful disease management more broadly, beyond short-term crop yield evaluations. Plant disease can affect ecosystem services directly, such as through removal of plants providing services, or indirectly through the effects of disease management activities, including pesticide applications, tillage, and other methods of plant removal. Increased plant biodiversity may reduce disease risk if susceptible host tissue becomes less common, or may increase risk if additional plant species are important in completing pathogen life cycles. Arthropod and microbial biodiversity may play similar roles. Distant ecosystems may provide a disservice as the setting for the evolution of pathogens that later invade a focal ecosystem, where plants have not evolved defenses. Conversely, distant ecosystems may provide a service as sources of genetic resources of great value to agriculture, including disease resistance genes. Good policies are needed to support conservation and optimal use of genetic resources, protect ecosystems from exotic pathogens, and limit the homogeneity of agricultural systems. Research is needed to provide policy makers, farmers, and consumers with the information required for evaluating trade-offs in the pursuit of the full range of ecosystem services desired from managed and native ecosystems.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

Cited by 75 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Comprehensive Review of Climate Change and Plant Diseases in Brazil;Plants;2024-09-01

2. Managing agrobiodiversity: integrating field and landscape scales for biodiversity-yield synergies;Basic and Applied Ecology;2024-03

3. A Global Assessment of the State of Plant Health;Plant Disease;2023-12-01

4. Climate Change and Plant Pathogen Invasions;CABI INVASIVE SER;2023

5. Forest Pathology in Ecosystem Services;Tropical Forest Ecosystem Services in Improving Livelihoods For Local Communities;2022-12-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3