RepA Protein Encoded by Oat dwarf virus Elicits a Temperature-Sensitive Hypersensitive Response–Type Cell Death That Involves Jasmonic Acid–Dependent Signaling

Author:

Qian Yajuan1,Hou Huwei12,Shen Qingtang1,Cai Xinzhong1,Sunter Garry3,Zhou Xueping12

Affiliation:

1. State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310029, People’s Republic of China;

2. State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People’s Republic of China;

3. Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, U.S.A.

Abstract

The hypersensitive response (HR) is a component of disease resistance that is often induced by pathogen infection, but essentially no information is available for members of the destructive mastreviruses. We have investigated an HR-type response elicited in Nicotiana species by Oat dwarf virus (ODV) and have found that expression of the ODV RepA protein but not other ODV-encoded proteins elicits the HR-type cell death associated with a burst of H2O2. Deletion mutagenesis indicates that the first nine amino acids (aa) at the N terminus of RepA and the two regions located between aa residues 173 and 195 and between aa residues 241 and 260 near the C terminus are essential for HR-type cell-death elicitation. Confocal and electron microscopy showed that the RepA protein is localized in the nuclei of plant cells and might contain bipartite nuclear localization signals. The HR-like lesions mediated by RepA were inhibited by temperatures above 30°C and involvement of jasmonic acid (JA) in HR was identified by gain- and loss-of-function experiments. To our knowledge, this is the first report of an elicitor of HR-type cell death from mastreviruses.

Publisher

Scientific Societies

Subject

Agronomy and Crop Science,General Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3