Transcriptome Analysis of Apple Leaves Infected by the Rust Fungus Gymnosporangium yamadae at Two Sporulation Stages

Author:

Tao Si-Qi12,Auer Lucas2,Morin Emmanuelle2,Liang Ying-Mei3,Duplessis Sébastien2ORCID

Affiliation:

1. The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing 100083, China

2. Université de Lorraine, INRAE, Unité Mixte de Recherche 1136 Interactions Arbres-Microorganismes, 54280, Champenoux, France

3. Museum of Beijing Forestry University, Beijing Forestry University

Abstract

Apple rust disease caused by Gymnosporangium yamadae is one of the major threats to apple orchards. In this study, dual RNA-seq analysis was conducted to simultaneously monitor gene expression profiles of G. yamadae and infected apple leaves during the formation of rust spermogonia and aecia. The molecular mechanisms underlying this compatible interaction at 10 and 30 days postinoculation (dpi) indicate a significant reaction from the host plant and comprise detoxication pathways at the earliest stage and the induction of secondary metabolism pathways at 30 dpi. Such host reactions have been previously reported in other rust pathosystems and may represent a general reaction to rust infection. G. yamadae transcript profiling indicates a conserved genetic program in spermogonia and aecia that is shared with other rust fungi, whereas secretome prediction reveals the presence of specific secreted candidate effector proteins expressed during apple infection. Unexpectedly, the survey of fungal unigenes in the transcriptome assemblies of inoculated and mock-inoculated apple leaves reveals that G. yamadae infection may modify the fungal community composition in the apple phyllosphere at 30 dpi. Collectively, our results provide novel insights into the compatible apple–G. yamadae interaction and advance the knowledge of this heteroecious demicyclic rust fungus.

Funder

National Natural Science Foundation of China

China Scholarship Council

Agence Nationale de la Recherche

Publisher

Scientific Societies

Subject

Agronomy and Crop Science,General Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3