Transcriptional Adaptation of Mycosphaerella graminicola to Programmed Cell Death (PCD) of Its Susceptible Wheat Host

Author:

Keon John,Antoniw John,Carzaniga Raffaella,Deller Siân,Ward Jane L.,Baker John M.,Beale Michael H.,Hammond-Kosack Kim,Rudd Jason J.

Abstract

Many important fungal pathogens of plants spend long periods (days to weeks) of their infection cycle in symptomless association with living host tissue, followed by a sudden transition to necrotrophic feeding as host tissue death occurs. Little is known about either the host responses associated with this sudden transition or the specific adaptations made by the pathogen to invoke or tolerate it. We are studying a major host-specific fungal pathogen of cultivated wheat, Septoria tritici (teleomorph Mycosphaerella graminicola). Here, we describe the host responses of wheat leaves infected with M. graminicola during the development of disease symptoms and use microarray transcription profiling to identify adaptive responses of the fungus to its changing environment. We show that symptom development on a susceptible host genotype has features reminiscent of the hypersensitive response, a rapid and strictly localized form of host programmed cell death (PCD) more commonly associated with disease-resistance mechanisms. The initiation and advancement of this host response is associated with a loss of cell-membrane integrity and dramatic increases in apoplastic metabolites and the rate of fungal growth. Micro-array analysis of the fungal genes differentially expressed before and after the onset of host PCD supports a transition to more rapid growth. Specific physiological adaptation of the fungus is also revealed with respect to membrane transport, chemical and oxidative stress mechanisms, and metabolism. Our data support the hypothesis that host plant PCD plays an important role in susceptibility towards fungal pathogens with necrotrophic lifestyles.

Publisher

Scientific Societies

Subject

Agronomy and Crop Science,General Medicine,Physiology

Cited by 173 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3