Identification of New Potential Regulators of the Medicago truncatula—Sinorhizobium meliloti Symbiosis Using a Large-Scale Suppression Subtractive Hybridization Approach

Author:

Godiard Laurence,Niebel Andreas,Micheli Fabienne,Gouzy Jérôme,Ott Thomas,Gamas Pascal

Abstract

We set up a large-scale suppression subtractive hybridization (SSH) approach to identify Medicago truncatula genes differentially expressed at different stages of the symbiotic interaction with Sinorhizobium meliloti, with a particular interest for regulatory genes. We constructed 7 SSH libraries covering successive stages from Nod factor signal transduction to S. meliloti infection, nodule organogenesis, and functioning. Over 26,000 clones were differentially screened by two rounds of macroarray hybridizations. In all, 3,340 clones, corresponding to genes whose expression was potentially affected, were selected, sequenced, and ordered into 2,107 tentative gene clusters, including 767 MtS clusters corresponding to new M. truncatula genes. In total, 52 genes encoding potential regulatory proteins, including transcription factors (TFs) and other elements of signal transduction cascades, were identified. The expression pattern of some of them was analyzed by quantitative reverse-transcription polymerase chain reaction in wild-type and in Nod¯ M. truncatula mutants blocked before or after S. meliloti infection. Three genes, coding for TFs of the bHLH and WRKY families and a C2H2 zinc-finger protein, respectively, were found to be upregulated, following S. meliloti inoculation, in the infection-defective mutant lin, whereas the bHLH gene also was expressed in the root-hair-curling mutant hcl. The potential role of these genes in early symbiotic steps is discussed.

Publisher

Scientific Societies

Subject

Agronomy and Crop Science,General Medicine,Physiology

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3