The cAMP Signaling Pathway in Fusarium verticillioides Is Important for Conidiation, Plant Infection, and Stress Responses but Not Fumonisin Production

Author:

Choi Yoon-E,Xu Jin-Rong

Abstract

Fusarium verticillioides is one of the most important fungal pathogens of maize. Mycotoxin, fumonisins produced by this pathogen pose a threat to human and animal health. Because cAMP signaling has been implicated in regulating diverse developmental and infection processes in fungal pathogens, in this study, we aimed to elucidate the function of the cAMP–protein kinase A (PKA) pathway in toxin production and plant infection in F. verticillioides. Targeted deletion mutants were generated for the CPK1 and FAC1 genes that encode a catalytic subunit of PKA and the adenylate cyclase, respectively. Defects in radial growth and macroconidiation were observed in both the cpk1 and fac1 deletion mutants. The fac1 mutant also was significantly reduced in virulence and microconidiation but increased in tolerance to heat and oxidative stresses. These phenotypes were not observed in the cpk1 mutant, indicating that additional catalytic subunit of PKA must exist and function downstream from FAC1. The fac1 mutant formed microconidia mainly in false heads. The expression levels of the hydrophobin genes HYD1 and HYD2, which are known to be associated with change in formation of microconidia, were significantly reduced in the fac1 mutant. Expression of F. verticillioides GSY2 and HSP26 genes, two other putative downstream targets of FAC1, was increased in the fac1 mutant and may be associated with its enhanced stress tolerance. Although fumonisin production was normal, biosynthesis of bikaverin was increased in the fac1 mutant, suggesting that FAC1 and cAMP signaling may have pathway-or metabolite-specific regulatory roles in secondary metabolism. Overall, the pleiotropic defects of the fac1 deletion mutant indicate that the cAMP-PKA pathway is involved in growth, conidiation, bikaverin production, and plant infection in F. verticillioides.

Publisher

Scientific Societies

Subject

Agronomy and Crop Science,General Medicine,Physiology

Cited by 73 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3