The Type III–Secreted Protein NopE1 Affects Symbiosis and Exhibits a Calcium-Dependent Autocleavage Activity

Author:

Wenzel Mandy,Friedrich Lars,Göttfert Michael,Zehner Susanne

Abstract

The type III–secreted proteins NopE1 and NopE2 of Bradyrhizobium japonicum contain a repeated domain of unknown function (DUF1521), which is present in a few uncharacterized proteins. A nopE1/nopE2 double mutant strain exhibited higher nodulation efficiency on Vigna radiata KPS2 than the wild type or single nopE1 or nopE2 mutants. This indicates that both proteins are effectors that functionally overlap. To test translocation into the plant cell compartment during symbiosis, NopE1 and NopE2 were fused with adenylate cyclase (cya) as reporter. A fusion with the full-length proteins or N-terminal peptides resulted in increased cAMP levels in nodules, indicating translocation. Purified NopE1 exhibited self-cleavage in the presence of Ca2+. Two identical cleavage sites (GD'PHVD) were identified inside the DUF1521 domains. The C-terminal cleavage site was analyzed by alanine scanning. Protein variants in which aspartate or proline next to the cleavage sites was substituted displayed no cleavage. A noncleavable protein was obtained by exchange of the aspartate residues preceding both cleavage sites. Complementation analysis with the noncleavable NopE1 variant did not restore wild-type phenotype on Vigna radiata KPS2, indicating a physiological role of NopE1 cleavage in effector function.

Publisher

Scientific Societies

Subject

Agronomy and Crop Science,General Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3