Molecular Characterization of pssCDE Genes of Rhizobium leguminosarum bv. trifolii strain TA1: pssD Mutant Is Affected in Exopolysaccharide Synthesis and Endocytosis of Bacteria

Author:

Król Jaroslaw,Wielbo Jerzy,Mazur Andrzej,Kopcinska Joanna,Lotocka Barbara,Golinowski Wladyslaw,Skorupska Anna

Abstract

We have identified the three genes pssCDE in Rhizobium leguminosarum bv. trifolii TA1. Even though they were almost identical to earlier identified pssCDE genes of R. leguminosarum, they differed in gene lengths and gene overlaps. The predicted gene products of pssCDE genes shared significant homology to prokaryotic glycosyl transferases involved in exopolysaccharide synthesis. The Tn5 insertion in pssD created the nonmucoid mutant that induced non-nitrogen-fixing nodules. The microscopic analysis of the nodules, induced on Trifolium pratense by the pssD133 mutant, showed abnormally enlarged infection threads densely packed with bacteria, which were released from the infection threads in an unusual way. The symbiosomes were observed very rarely and the nodule remained almost empty. Symbiotic phenotype of the pssD133 suggested a correlation between this mutation and defective endocytosis of bacteria into nodule cells.

Publisher

Scientific Societies

Subject

Agronomy and Crop Science,General Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3