Amino Acid Synthesis Is Necessary for Tomato Root Colonization by Pseudomonas fluorescens Strain WCS365

Author:

Simons Marco,Permentier Hjalmar P.,de Weger Letty A.,Wijffelman Carel A.,Lugtenberg Ben J. J.

Abstract

In this work the bio-availability of amino acids for the root-colonizing Pseudomonas fluorescens strain WCS365 in the tomato rhizosphere was studied. The amino acid composition of axenically collected tomato root exudate was determined. The results show that aspartic acid, glutamic acid, isoleucine, leucine, and lysine are the major amino acid components. The concentrations of individual amino acids in the rhizosphere of gnotobiotically grown tomato plants were estimated and considered to be too low to support growth of rhizosphere micro-organisms to numbers usually found in the tomato rhizosphere. To test this experimentally, mutants of P. fluorescens WCS365 auxotrophic for the amino acids leucine, arginine, histidine, isoleucine plus valine, and tryptophan were isolated after mutagenesis with Tn5lacZ. Root tip colonization of these mutants was measured after inoculation of germinated tomato seeds and subsequent growth in a gnotobiotic quartz sand system (M. Simons, A. J. van der Bij, I. Brand, L. A. de Weger, C. A. Wijffelman, and B. J. J. Lugtenberg. 1996. Gnotobiotic system for studying rhizo-sphere colonization by plant growth-promoting Pseudomonas bacteria. Mol. Plant-Microbe Interact. 9:600–607). In contrast to the wild-type strain, none of the five amino acid auxotrophs tested was able to colonize the tomato root tip, neither alone nor after co-inoculation with the wild-type strain. However, addition of the appropriate amino acid to the system restored colonization by the auxotrophic mutants, usually to wild-type levels. Analysis of the root base showed that cells of auxotrophic mutants were still present there. The results show that, although amino acids are present in root exudate, the bio-availability of the tested amino acids is too low to support root tip colonization by auxotrophic mutants of P. fluorescens strain WCS365. The genes that are required for amino acid synthesis are therefore necessary for root colonization. Moreover, these compounds apparently play no major role as nutrients in the tomato rhizosphere.

Publisher

Scientific Societies

Subject

Agronomy and Crop Science,General Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3