dnaK and the Heat Stress Response of Pseudomonas syringae pv. glycinea

Author:

Keith Lisa M. W.,Partridge James E.,Bender Carol L.

Abstract

The dnaK gene from Pseudomonas syringae pv. glycinea PG4180 was cloned and sequenced. The dnaK coding region was 1,917 bp and contained a putative σ32 heat shock promoter 86 bp upstream of the translational start site. grpE, another heat shock gene, was found immediately upstream of the putative dnaK promoter. The predicted amino acid sequence of dnaK showed relatedness to the ATPase and substrate binding domains commonly found in heat shock proteins, as well as the highly conserved signature sequence motifs belonging to the Hsp70 protein family. Furthermore, the PG4180 dnaK gene complemented an Escherichia coli dnaK mutant for growth at temperatures above 37°C, indicating that a fully functional dnaK homologue had been cloned from P. syringae pv. glycinea. All attempts to eliminate dnaK function by insertion mutagenesis failed, possibly because DnaK performs essential functions in P. syringae pv. glycinea. Expression of dnaK in P. syringae pv. glycinea PG4180 was investigated by constructing dnaK∷uidA transcriptional fusions; expression of dnaK increased markedly when cells were preincubated at 18°C and then shifted to 35°C. An anti-DnaK monoclonal antibody was used to detect DnaK; in P. syringae pv. glycinea race 4, DnaK levels followed cell density during a 6-h incubation at 26°C. When cells were shifted from 26°C to either 32 or 38°C, DnaK levels increased transiently, and then decreased rapidly. Although the cells continued to grow when incubated at 32°C, growth was not supported at 38°C. Our results indicate that P. syringae pv. glycinea responds to heat shock by producing DnaK, but DnaK does not aid in acclimation to sustained elevated temperatures.

Publisher

Scientific Societies

Subject

Agronomy and Crop Science,General Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3