Targeted Disruption of a Fungal G-Protein β Subunit Gene Results in Increased Vegetative Growth but Reduced Virulence

Author:

Kasahara Shin,Nuss Donald L.

Abstract

Targeted disruption of two G-protein α subunit genes in the chestnut blight fungus Cryphonectria parasitica revealed roles for the G subunit CPG-1 in fungal reproduction, virulence, and vegetative growth. A second Gα subunit, CPG-2, was found to be dispensable for these functions. We now report the cloning and targeted disruption of a C. parasitica G-protein β subunit gene. The deduced amino acid sequence encoded by this gene, designated cpgb-1, was found to share 66.2, 65.9, and 66.7% amino acid identity with Gβ homologues from human, Drosophila, and Dictyostelium origins, respectively, but only 39.7% identity with the Saccharomyces cerevisiae Gβ homologue STE4 product. Low stringency Southern hybridization failed to detect any related Gβ subunit genes in C. parasitica. Targeted disruption of cpgb-1 resulted in several of the changes previously reported to accompany disruption of the C. parasitica G subunit gene cpg-1. These included very significant reductions in pigmentation, asexual sporulation, and virulence. In contrast to results obtained for G gene disruption, the reduction in virulence resulting from the disruption of a Gβ gene was accompanied by increased, rather than decreased, vegetative growth on synthetic medium. The relevance of these results to mechanisms of fungal virulence is considered.

Publisher

Scientific Societies

Subject

Agronomy and Crop Science,General Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3