Association Mapping Combined with Whole Genome Sequencing Data Reveals Candidate Causal Variants for Sclerotinia Stem Rot Resistance in Brassica napus

Author:

Newman Toby E.1,Khentry Yuphin1,Leo Audrey2,Lindbeck Kurt D.2,Kamphuis Lars G.1ORCID,Derbyshire Mark C.1ORCID

Affiliation:

1. Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia

2. New South Wales Department of Primary Industries, Pine Gully Road, Wagga Wagga, NSW 2650, Australia

Abstract

Canola ( Brassica napus) yield can be significantly reduced by the disease sclerotinia stem rot (SSR), which is caused by Sclerotinia sclerotiorum, a necrotrophic fungal pathogen with an unusually large host range. Breeding cultivars that are physiologically resistant to SSR is desirable to enhance crop productivity. However, the development of resistant varieties has proved challenging due to the highly polygenic nature of S. sclerotiorum resistance. Here, we identified regions of the B. napus genome associated with SSR resistance using data from a previous study by association mapping. We then validated their contribution to resistance in a follow-up screen. This follow-up screen also confirmed high levels of SSR resistance in several genotypes from the previous study. Using publicly available whole genome sequencing data for a panel of 83 B. napus genotypes, we identified nonsynonymous polymorphisms linked to the SSR resistance loci. A qPCR analysis showed that two of the genes containing these polymorphisms were transcriptionally responsive to S. sclerotiorum infection. In addition, we provide evidence that homologues of three of the candidate genes contribute to resistance in the model Brassicaceae species Arabidopsis thaliana. The identification of resistant germplasm and candidate genomic loci associated with resistance are important findings that can be exploited by breeders to improve the genetic resistance of canola varieties.

Funder

Curtin University

Grains Research and Development Corporation

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3