Endophytic Streptomyces sp. NEAU-DD186 from Moss with Broad-Spectrum Antimicrobial Activity: Biocontrol Potential Against Soilborne Diseases and Bioactive Components

Author:

Gao Congting12,Wang Zhiyan3,Wang Chengqin4,Yang Jingquan1,Du Rui1,Bing Hui1,Xiang Wensheng1,Wang Xiangjing1,Liu Chongxi12ORCID

Affiliation:

1. Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China

2. Hebei Technology Innovation Center for Green Management of Soil-borne Diseases, Baoding University, Baoding 071000, China

3. Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute & Hospital, Tianjin 300072, China

4. Gaomi City Inspection and Testing Center, Gaomi 261500, China

Abstract

Soilborne diseases cause significant economic losses in agricultural production around the world. They are difficult to control because a host plant is invaded by multiple pathogens, and chemical control often does not work well. In this study, we isolated and identified an endophytic Streptomyces sp. NEAU-DD186 from moss, which showed broad-spectrum antifungal activity against 17 soilborne phytopathogenic fungi, with Bipolaris sorokiniana being the most prominent. The strain also exhibited strong antibacterial activity against soilborne phytopathogenic bacteria Ralstonia solanacearum. To evaluate its biocontrol potential, the strain was prepared into biofertilizer by solid-state fermentation. Response surface methodology was employed to optimize the fermentation conditions for maximizing spore production and revealed that the 1:1 ratio of vermicompost to wheat bran, a temperature of 28°C, and 50% water content with an inoculation amount of 15% represented the optimal parameters. Pot experiments showed that the application of biofertilizer with a spore concentration of 108 CFU/g soil could effectively suppress the occurrence of tomato bacterial wilt caused by R. solanacearum and wheat root rot caused by B. sorokiniana, and the biocontrol efficacy was 81.2 and 72.2%, respectively. Chemical analysis of strain NEAU-DD186 extracts using nuclear magnetic resonance spectrometry and mass analysis indicated that 25-O-malonylguanidylfungin A and 23-O-malonylguanidylfungin A were the main active constituents, which showed high activity against R. solanacearum (EC50 of 2.46 and 2.58 µg ml−1) and B. sorokiniana (EC50 of 3.92 and 3.95 µg ml−1). In conclusion, this study demonstrates that Streptomyces sp. NEAU-DD186 can be developed as biofertilizer to control soilborne diseases.

Funder

Hebei Technology Innovation Center for Green Management of Soil-borne Diseases

Postdoctoral Start-up Fund of Heilongjiang Province

Publisher

Scientific Societies

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3