Biochemical Changes in the Leaves of Wheat Plants Infected by Pyricularia oryzae

Author:

Debona Daniel,Rodrigues Fabrício Ávila,Rios Jonas Alberto,Nascimento Kelly Juliane Telles

Abstract

Blast, caused by the fungus Pyricularia oryzae, is a major disease of the wheat crop in the Brazilian Cerrado and represents a potential threat to world wheat production. However, information about the wheat–P. oryzae interaction is still limited. In this work, the activities of the enzymes superoxide dismutase (SOD), catalase (CAT), peroxidase (POX), glutathione-S-transferase (GST), ascorbate peroxidase (APX), glutathione reductase (GR), and glutathione peroxidase (GPX) and the concentrations of superoxide (O2), hydrogen peroxide (H2O2), and malondialdehyde (MDA) as well as the electrolyte leakage (EL) were studied in wheat plants ‘BR 18’ and ‘BRS 229’, which are susceptible and partially resistant, respectively, to leaf blast at the vegetative growth stage, during the infection process of P. oryzae. The blast severity in BRS 229 was 50% lower than in BR 18 at 96 h after inoculation (hai). The activities of SOD, POX, APX, and GST increased for both cultivars in the inoculated plants compared with noninoculated plants and the increases were more pronounced for BRS 229 than for BR 18 at 96 hai. The GR and CAT activities only increased in inoculated plants from BRS 229 at 96 hai. For BR 18, the GR activity was not influenced by plant inoculation, and the CAT activity was lower in inoculated plants. The GPX activity only increased in inoculated plants from BR 18 at 48 and 72 hai. The P. oryzae infection increased the O2, H2O2, and MDA concentrations and EL. However, the greater increases of the SOD, POX, APX, GST, GR, and CAT activities for BRS 229 compared with BR 18 contributed to the lower O2, H2O2, and MDA concentrations and EL verified in the former. These results show that a more efficient antioxidative system in the removal of excess of reactive oxygen species generated during the infection process of P. oryzae limits the cellular damage caused by the fungus, thus contributing to greater wheat resistance to blast.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3