Mechanisms of Broad Host Range Necrotrophic Pathogenesis in Sclerotinia sclerotiorum

Author:

Liang Xiaofei1,Rollins Jeffrey A.1ORCID

Affiliation:

1. First author: State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University; and second author: Department of Plant Pathology, University of Florida, P.O. Box 110680, Gainesville 32611-0680.

Abstract

Among necrotrophic fungi, Sclerotinia sclerotiorum is remarkable for its extremely broad host range and for its aggressive host tissue colonization. With full genome sequencing, transcriptomic analyses and the increasing pace of functional gene characterization, the factors underlying the basis of this broad host range necrotrophic pathogenesis are now being elucidated at a greater pace. Among these, genes have been characterized that are required for infection via compound appressoria in addition to genes associated with colonization that regulate oxalic acid (OA) production and OA catabolism. Moreover, virulence-related secretory proteins have been identified, among which are candidates for manipulating host activities apoplastically and cytoplasmically. Coupled with these mechanistic studies, cytological observations of the colonization process have blurred the heretofore clear-cut biotroph versus necrotroph boundary. In this review, we reexamine the cytology of S. sclerotiorum infection and put more recent molecular and genomic data into the context of this cytology. We propose a two-phase infection model in which the pathogen first evades, counteracts and subverts host basal defense reactions prior to killing and degrading host cells. Spatially, the pathogen may achieve this via the production of compatibility factors/effectors in compound appressoria, bulbous subcuticular hyphae, and primary invasive hyphae. By examining the nuances of this interaction, we hope to illuminate new classes of factors as targets to improve our understanding of broad host range necrotrophic pathogens and provide the basis for understanding corresponding host resistance.

Funder

Division of Integrative Organismal Systems

Agricultural Research Service

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3