Affiliation:
1. Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, 130 West of Changjiang Road, Hefei, 230036, China
Abstract
Yellow Mountain fuzz tip, a cultivar of Camellia sinensis (L.) Kuntze, is commonly grown in the Yellow Mountain region in Anhui Province of China. During 2011 to 2012, leaf and twig blight on tea plants occurred from July to September in growing regions. Symptoms of blight on leaves of infected plants were detected in 30 to 60% of the fields visited and up to 500 ha were affected each year. Symptoms began as small, water-soaked lesions on young leaves and twigs and later became larger, dark brown, necrotic lesions, 1 to 3 mm in diameter on leaves and 2 to 5 mm long on twigs. To determine the causal agent, symptomatic leaf tissue was collected from plants in Gantang and Tangkou townships in September 2012. Small pieces of diseased tea leaves and twigs were surface-disinfested in 2% NaClO for 3 min, rinsed twice in distilled water, plated on potato dextrose agar, and incubated at 28°C for 5 days. Eleven isolates were recovered and all cultures produced white-to-gray fluffy aerial hyphae and were dark on the reverse of the plate. The hyphae were hyaline, branching, and septate. Setae were 2- to 3-septate, dark brown, acicular, and 78.0 to 115.0 μm. Conidiogenous cells were hyaline, short, branchless, cylindrical, and 11.3 to 21.5 × 4.2 to 5.3 μm. Conidia were hyaline, aseptate, guttulate, cylindrical, and 12.5 to 17.3 × 3.9 to 5.8 μm. Appresoria were ovate to obovate, dark brown, and 8.4 to 15.2 × 7.8 to 12.9 μm. DNA was amplified using the rDNA-ITS primer pair ITS4/ITS5 (3), glyceraldehyde-3-phosphate dehydrogenase gene (GAPDH) primer pair GDF/GDR (2) and beta-tubulin 2 gene (Tub2) primer pair Btub2Fd/Btub4Rd (4). Sequences (GenBank Accession Nos. KC913203, KC913204, and KC913205) of the 11 isolates were identical and revealed 100% similarity to the ITS sequence of strain P042 of Colletotrichum gloeosporioides (EF423527), 100% identity to the GAPDH of isolate C07009 of C. gloeosporioides (GU935860), and 99% similarity to Tub2 of isolate 85 of C. gloeosporioides (AJ409292), respectively. Based on the above data, the 11 isolates were identified as C. gloeosporioides (Penz.) Penz. & Sacc. To confirm pathogenicity, Koch's postulate was performed and 4 ml of conidial suspension (1 × 105 conidia/ml) of each of the 11 isolates was sprayed on five leaves and five twigs per plant on four 12-month-old Yellow Mountain fuzz tip plants. Control plants were sprayed with distilled water. The inoculated plants were maintained at 28°C in a greenhouse with constant relative humidity of 90% and a 12-h photoperiod of fluorescent light. Brown necrotic lesions appeared on leaves and twigs after 7 days, while the control plants remained healthy. The experiments were conducted three times and the fungus was recovered and identified as C. gloeosporioides by both morphology and molecular characteristics. Tea plant blight caused by C. gloeosporioides was identified in Brazil (1), but to our knowledge, this is the first report of C. gloeosporioides causing tea leaf and twig blight on Yellow Mountain fuzz tip plants in Anhui Province of China. References: (1) M. A. S. Mendes et al. Page 555 in: Embrapa-SPI/Embrapa-Cenargen, Brasilia, 1998. (2) M. D. Templeton et al. Gene 122:225, 1992. (3) T. J. White et al. Page 315 in: PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego, 1990. (4) J. H. C. Woudenberg et al. Persoonia 22:56, 2009.
Subject
Plant Science,Agronomy and Crop Science