Genes Conferring Sensitivity to Stagonospora nodorum Necrotrophic Effectors in Stagonospora Nodorum Blotch-Susceptible U.S. Wheat Cultivars

Author:

Bertucci Matthew1,Brown-Guedira Gina2,Murphy J. Paul3,Cowger Christina4

Affiliation:

1. United States Department of Agriculture–Agricultural Research Service (USDA-ARS), Department of Plant Pathology, North Carolina State University, Raleigh 27695

2. Department of Crop Science, North Carolina State University, Raleigh 27695

3. USDA-ARS, Department of Crop Science, North Carolina State University, Raleigh 27606

4. USDA-ARS, Department of Plant Pathology, North Carolina State University, Raleigh 27695

Abstract

Stagonospora nodorum is a necrotrophic fungal pathogen that causes Stagonospora nodorum blotch (SNB), a yield- and quality-reducing disease of wheat. S. nodorum produces a set of necrotrophic effectors (NEs) that interact with the products of host sensitivity genes to cause cell death and increased susceptibility to disease. The focus of this study was determination of NE sensitivity among 25 winter wheat cultivars, many of them from the southeastern United States, that are susceptible to SNB, as well as the moderately resistant ‘NC-Neuse’. Thirty-three isolates of S. nodorum previously collected from seven southeastern U.S. states were cultured for NE production, and the culture filtrates were used in an infiltration bioassay. Control strains of Pichia pastoris that expressed SnToxA, SnTox1, or SnTox3 were also used. All SNB-susceptible cultivars were sensitive to at least one NE, while NC-Neuse was insensitive to all NEs tested. Among the sensitive lines, 32% contained sensitivity gene Tsn1 and 64% contained sensitivity gene Snn3. None were sensitive to SnTox1. Additionally, 10 molecular markers for sensitivity genes Tsn1, Snn1, Snn2, and Snn3 were evaluated for diagnostic potential. Only the marker Xfcp623 for Tsn1 was diagnostic, and it was in perfect agreement with the results of the infiltration bioassays. The results illuminate which NE sensitivity genes may be of concern in breeding for resistance to SNB in the southeastern United States.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3