Alterations in Sucrose and Phenylpropanoid Metabolism Affected by BABA-Primed Defense in Postharvest Grapes and the Associated Transcriptional Mechanism

Author:

Li Chunhong12,Wang Kaituo1ORCID,Lei Changyi1,Cao Shifeng3,Huang Yixiao14,Ji Nana2,Xu Feng2,Zheng Yonghua2

Affiliation:

1. College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404000, China

2. College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095 Jiangsu, China

3. College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315211, China

4. College of Arts and Sciences, University of Miami, Coral Gables, FL 33143, U.S.A.

Abstract

Defense elicitors can induce fruit disease resistance to control postharvest decay but may incur quality impairment. Our present work aimed to investigate the resistance against Botrytis cinerea induced by the elicitor β-aminobutyric acid (BABA) and to elucidate the specific transcriptional mechanism implicated in defense-related metabolic regulations. The functional dissection results demonstrated that, after inoculation with the fungal necrotroph B. cinerea, a suite of critical genes encoding enzymes related to the sucrose metabolism and phenylpropanoid pathway in priming defense in grapes were transcriptionally induced by treatment with 10 mM BABA. In contrast, more UDP-glucose, a shared precursor of phenylpropanoid and sucrose metabolism, may be redirected to the phenylpropanoid pathway for the synthesis of phytoalexins, including trans-resveratrol and ɛ-viniferin, in 100 mM BABA–treated grapes, resulting in direct resistance but compromised soluble sugar contents. An R2R3-type MYB protein from Vitis vinifera, VvMYB44, was isolated and characterized. VvMYB44 expression was significantly induced upon the grapes expressed defensive reaction. Subcellular localization, yeast two-hybrid, and coimmunoprecipitation assays revealed that the nuclear-localized VvMYB44 physically interacted with the salicylic acid–responsive transcription coactivator NPR1 in vivo for defense expression. In addition, VvMYB44 directly bound to the promoter regions of sucrose and phenylpropanoid metabolism-related genes and transactivated their expression, thus tipping the balance of antifungal compound accumulation and soluble sugar maintenance. Hence, these results suggest that 2R-type VvMYB44 might be a potential positive participant in BABA-induced priming defense in grape berries that contributes to avoiding the excessive consumption of soluble sugars during the postharvest storage. [Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license .

Funder

National Natural Science Foundation of China

Natural Science Foundation of Ningbo City

Open Foundation for Institute of Three Gorgers research

Publisher

Scientific Societies

Subject

Agronomy and Crop Science,General Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3