Growth Promotion of Giant Duckweed Spirodela polyrhiza (Lemnaceae) by Ensifer sp. SP4 Through Enhancement of Nitrogen Metabolism and Photosynthesis

Author:

Toyama Tadashi1ORCID,Mori Kazuhiro1,Tanaka Yasuhiro1,Ike Michihiko2,Morikawa Masaaki3

Affiliation:

1. Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan

2. Division of Sustainable Energy and Environmental Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan

3. Division of Biosphere Science, Graduate School of Environmental Science, Hokkaido University, Kita-10 Nishi-5, Kita-ku, Sapporo 060-0810, Japan

Abstract

Duckweeds (Lemnaceae) are representative producers in fresh aquatic ecosystems and also yield sustainable biomass for animal feeds, human foods, and biofuels, and contribute toward effective wastewater treatment; thus, enhancing duckweed productivity is a critical challenge. Plant-growth-promoting bacteria (PGPB) can improve the productivity of terrestrial plants; however, duckweed–PGPB interactions remain unclear and no previous study has investigated the molecular mechanisms underlying duckweed–PGPB interaction. Herein, a PGPB, Ensifer sp. strain SP4, was newly isolated from giant duckweed (Spirodela polyrhiza), and the interactions between S. polyrhiza and SP4 were investigated through physiological, biochemical, and metabolomic analyses. In S. polyrhiza and SP4 coculture, SP4 increased the nitrogen (N), chlorophyll, and ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) contents and the photosynthesis rate of S. polyrhiza by 2.5-, 2.5-, 2.7-, and 2.4-fold, respectively. Elevated photosynthesis increased the relative growth rate and biomass productivity of S. polyrhiza by 1.5- and 2.7-fold, respectively. Strain SP4 significantly altered the metabolomic profile of S. polyrhiza, especially its amino acid profile. N stable isotope analysis revealed that organic N compounds were transferred from SP4 to S. polyrhiza. These N compounds, particularly glutamic acid, possibly triggered the increase in photosynthetic and growth activities. Accordingly, we propose a new model for the molecular mechanism underlying S. polyrhiza growth promotion by its associated bacteria Ensifer sp. SP4, which occurs through enhanced N compound metabolism and photosynthesis. Our findings show that Ensifer sp. SP4 is a promising PGPB for increasing biomass yield, wastewater purification activity, and CO2 capture of S. polyrhiza. [Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license .

Funder

Advanced Low-Carbon Technology Research and Development Program

Ministry of Education, Culture, Sports, Science and Technology

Publisher

Scientific Societies

Subject

Agronomy and Crop Science,General Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3