A Large Repetitive RTX-Like Protein Mediates Water-Soaked Lesion Development, Leakage of Plant Cell Content and Host Colonization in the Pantoea stewartii subsp. stewartii Pathosystem

Author:

Roper M. Caroline1,Burbank Lindsey P.1,Williams Kayla1,Viravathana Polrit1,Tien Hsin-Yu2,von Bodman Susanne3

Affiliation:

1. Department of Plant Pathology and Microbiology, University of California, Riverside, Riverside, CA 92521, U.S.A.;

2. Department of Plant Sciences, University of Connecticut, Storrs, CT 06238, U.S.A.

3. Division of Molecular and Cellular Biosciences, National Science Foundation, Arlington, VA 22230, U.S.A.;

Abstract

Pantoea stewartii subsp. stewartii is the etiological agent of Stewart’s wilt and is a serious bacterial pathogen affecting sweet corn. During the leaf blight phase, P. stewartii colonizes the leaf apoplast and causes a characteristic water-soaked lesion. The Hrp type III secretion system has been implicated in the water-soaking phenotype, and the goal of this study was to investigate other potential factors that contribute to the plant cellular disruption associated with these lesions. The P. stewartii genome contains a gene encoding a large repetitive RTX toxin, designated rtx2. RTX toxins comprise a large family of pore-forming proteins, which are widely distributed among gram-negative bacteria. These cytotoxins usually lyse their target host cells and cause significant tissue damage as a consequence. We hypothesized that this RTX-like toxin plays a role in the water-soaking phase of infection due to its predicted cytolytic properties. Based on the data reported here, we conclude that RTX2 contributes significantly to the development of water-soaked lesions and leakage of plant cellular contents and is an important pathogenicity factor for P. stewartii.

Publisher

Scientific Societies

Subject

Agronomy and Crop Science,General Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3